首页> 外文OA文献 >Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study
【2h】

Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study

机译:仅使用投影数据自动检测微钙化簇以进行数字乳房断层合成的初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Digital breast tomosynthesis (DBT) is a promising modality for breast imaging in which an anisotropic volume image of the breast is obtained. We present an algorithm for computerized detection of microcalcification clusters (MCCs) for DBT. This algorithm operates on the projection views only. Therefore it does not depend on reconstruction, and is computationally efficient. The algorithm was developed using a database of 30 image sets with microcalcifications, and a control group of 30 image sets without visible findings. The patient data were acquired on the first DBT prototype at Massachusetts General Hospital. Algorithm sensitivity was estimated to be 0.86 at 1.3 false positive clusters, which is below that of current MCC detection algorithms for full-field digital mammography. Because of the small number of patient cases, algorithm parameters were not optimized and one linear classifier was used. An actual limitation of our approach may be that the signal-to-noise ratio in the projection images is too low for microcalcification detection. Furthermore, the database consisted of predominantly small MCC. This may be related to the image quality obtained with this first prototype.
机译:数字乳腺断层合成(DBT)是一种有前途的乳腺成像方法,可获取乳房的各向异性体积图像。我们提出了一种用于DBT的微钙化簇(MCC)的计算机化检测算法。该算法仅在投影视图上运行。因此,它不依赖于重建,并且计算效率高。该算法是使用包含微钙化的30个图像集的数据库和30个没有可见发现的图像集的对照组开发的。患者数据是从马萨诸塞州综合医院的第一个DBT原型获得的。在1.3个假阳性簇上,算法敏感性估计为0.86,低于当前用于全视场X线摄影的MCC检测算法的敏感性。由于患者病例少,算法参数未得到优化,因此使用了一个线性分类器。我们方法的实际局限性可能是投影图像中的信噪比对于微钙化检测而言太低。此外,该数据库主要由小型MCC组成。这可能与通过该第一原型获得的图像质量有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号